Подробное объяснение как найти плотность насыщенного пара

Поговорим о плотности насыщенного пара что это за параметр, в чем измеряется, как обозначается, от чего зависит, как изменяется при изменении температуры в 4, 10, при 100 градусах Цельсия, дадим таблицу зависимости, как определить, чему равна

Учебное особие по физике

Насыщенные и ненасыщенные пары и их свойства

Над свободной поверхностью жидкости всегда имеются пары этой жидкости. Если сосуд с жидкостью не закрыт, то концентрация частиц пара при постоянной температуре может изменяться в широких пределах в сторону уменьшения и в сторону увеличения.

Процесс испарения в замкнутое пространство (закрытый сосуд с жидкостью) может при данной температуре происходить только до определенного предела. Это объясняется тем, что одновременно с испарением жидкости происходит конденсация пара. Сначала число молекул, вылетающих из жидкости за 1 с, больше числа молекул, возвращающихся обратно, и плотность, а значит, и давление пара растет. Это приводит к увеличению скорости конденсации. Через некоторое время наступает динамическое равновесие, при ко тором плотность пара над жидкостью становится постоянной. Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром. Пар, который не находится в состоянии динамического равновесия со своей жидкостью, называется ненасыщенным.

Опыт показывает, что ненасыщенные пары подчиняются всем газовым законам, и тем точнее, чем дальше они от насыщения Для насыщенных паров характерны следующие свойства:

  1. плотность и давление насыщенного пара при данной температуре — это максимальные плотность и давление, которые может иметь пар при данной температуре;
  2. плотность и давление насыщенного пара зависят от рода вещества. Чем меньше удельная теплота парообразования жидкости, тем быстрее она испаряется и тем больше давление и плотность ее паров;
  3. давление и плотность насыщенного пара однозначно определяются его температурой (не зависят от того, каким образом пар достиг этой температуры: при нагревании или при охлаждении);
  4. давление и плотность пара быстро возрастают с увеличением температуры (рис. 1, а, б).

    Рис. 1

    Опыт показывает, что при нагревании жидкости уровень жидкости в закрытом сосуде понижается. Следовательно, масса и плотность пара возрастают. Более сильное увеличение давления насыщенного пара по сравнению с идеальным газом (закон Гей-Люссака не применим к насыщенному пару) объясняется тем, что здесь происходит рост давления не только за счет роста средней кинетической энергии молекул (как у идеального газа), но и за счет увеличения концентрации молекул;

  5. при постоянной температуре давление и плотность насыщенного пара не зависят от объема. На рисунке 2 для сравнения приведены изотермы идеального газа (а) и насыщенного пара (б).

Рис. 2

Опыт показывает, что при изотермическом расширении уровень жидкости в сосуде понижается, при сжатии — повышается, т.е. изменяется число молекул пара так, что плотность пара остается постоянной.

Температура — испаряющаяся жидкость

Температура испаряющейся жидкости остается постоянной, а поглощение скрытой теплоты восполняется непрерывно змеевиками, подогреваемыми горячей водой или паром. При этом темп — pa испаряющейся жидкости бывает обычно равна или несколько выше темп-ры увлажняемой воздушной среды. Примером холодного испарения является испарение простой лужи, разлитой по полу при том или ином технологич. Темп-ра испаряющейся жидкости сначала изменяется и приобретает установившийся характер только по истечении нек-рого промежутка времени. Расположение приточных и вытяжных отверстий устанавливается в зависимости от наличия теплых или холодных токов в помещении.

Этот процесс характеризуется постоянством температуры испаряющейся жидкости tM — const. Точка пересечения В дает величину tM, равную в нашем примере 33 С.

Скорость перегонки зависит прежде всего от температуры испаряющейся жидкости, эффективности конденсационного устройства и от размеров сосуда. Если при обычной отгонке из U-образной трубки или перегонной колбы требуется перегнать примерно 1 г вещества за измеримый отрезок времени, то давление пара вещества должно составлять по меньшей мере 1 — 5 мм рт. ст. Скорость перегонки очень сильно зависит от давления пара или температуры испарения. Если в данной аппаратуре в течение 1 час при давлении пара, равном 1 мм рт. ст., отгоняется определенное количество вещества, то при давлении пара, равном 10 мм рт. ст., на отгонку этого же количества вещества потребуется около 1 / 2 мин, а при давлении 0 1 мм рт. ст. время отгонки составит 1 неделю. Однако повышение давления пара или температуры ограничено тем, что легко наступает депрессия температуры кипения, которая в условиях высокого вакуума может привести к процессу, аналогичному взрыву.

Удельная теплота парообразования уменьшается с повышением температуры испаряющейся жидкости. В частности, при повышении температуры кипения ( например, вследствие повышения давления) удельная теплота парообразования при кипении уменьшается.

При некоторых условиях температура смоченного термометра соответствует температуре испаряющейся жидкости. Поэтому температуру адиабатического насыщения газа называют также температурой мокрого термометра.

Как видим, выгоднее пользоваться паром с температурой перегрева выше температуры испаряющейся жидкости. Перегретый водяной пар нагревают в специальных пароперегревателях.

Теплота испарения только поддерживает тепловой баланс процесса испарения и не влияет на изменение температуры испаряющейся жидкости в сторону ее повышения.

Их влияние на скорость испарения косвенное, поскольку они определяют время прогрева или охлаждения испаряющегося топлива и температуру испаряющейся жидкости при изменении внешних условий.

Если давление в объеме, в котором происходит испарение сжиженного газа, уменьшить по сравнению с атмосферным, то температура испаряющейся жидкости снизится и температура охлаждаемого объема станет несколько ниже. Практически для снижения давления газа, находящегося в равновесии со своей жидкостью, используется непрерывная откачка этого газа из охлаждаемого объема с помощью форвакуумных насосов; в этом случае охлаждаемый объем должен быть изолирован от окружающей атмосферы.

Коэффициент теплопроводности и теплоемкость косвенно оказывают влияние на скорость испарения, поскольку они определяют время прогрева или охлаждения, а следовательно, и температуру испаряющейся жидкости при изменении внешних условий.

В распылительных сушилках сушка протекает настолько быстро, что материал, несмотря на высокую температуру, не успевает нагреться сверх допустимого предела и его температура близка к температуре испаряющейся жидкости.

При полном насыщении температура газа становится равной температуре жидкости. Поэтому температуру испаряющейся жидкости в изобарно-адиа-батическом процессе называют температурой адиабатического насыщения газа. При некоторых условиях температура смоченного термометра показывает температуру испаряющейся жидкости.

Что такое насыщенный пар

Водяной пар, пребывающий в термодинамическом равновесии с котловой водой, является насыщенным. Это формулировка дает понимание того, что давление насыщенного пара при температуре может иметь только одно значение

В котлоагрегатах парообразование протекает при постоянном давлении и подводе тепла к котловой воде от уходящих газов. Этот процесс базируется на следующих последовательных стадиях: подпитка котла водой, подогрев ее до температуры точки насыщения, и образование сухого насыщенного пара, когда вся жидкость испаряется из него.

В паровых котлах питательная вода, пройдя через экономайзер, попадает в барабан. Из него более холодные потоки под воздействием силы тяжести опускаются по необогреваемым трубам, а поднимаются по подъёмным топочным экранам обогреваемые более горячими дымовыми газами.

Плотность пароводяной смеси в экранных пакетах уменьшается и становится ниже плотности воды в опускных трубах, что создает напор для движения пароводяной смеси по экранам в барабан, где смесь сепарируется на воду и пар.

В закрытой поверхности нагрева при не меняющейся температуре в точке насыщения устанавливается термодинамическое равновесие между котловой водой и водяным паром. Число молекул пара, выделяющихся из поверхности воды за определенное время, будет равняться числу молекул сконденсированного пара, которые перейдут обратно в воду в барабане котла.

Давление насыщенного пара

Давление насыщения в котле зависит от температуры котловой воды в равновесном термодинамическом состоянии. При росте давления, пар сжимается и баланс нарушается. Плотность пара первоначально несколько возрастает, и из паровой среды в котловую воду будет переходить больше молекул конденсата, чем наоборот.

Поскольку количество молекул, переходящих из воды в единицу времени связано исключительно с температурой, то сжатие паровой среды не будет влиять на изменение этого числа.

Процесс будет протекать пока не возникнет термодинамическое равновесие, а следовательно, и концентрация возвращающихся молекул не достигнет первоначального уровня. Таким образом, Тнп напрямую зависит от давления насыщения в котле.

Таблица насыщенного пара

Характеристики сухого НП, приводятся в Таблице водяного пара. В ней указывают Т (С), при точке кипения котловой воды и давление (кПа и мм. рт.ст.) при которой этот процесс протекает.

Дополнительно в таблице могут указываться и другие параметры пара:

  • eдельный объем, м3/кг;
  • плотность, кг/м3;
  • удельная энтальпия, кДж/кг
  • удельная теплота парообразования, кДж/кг.

Плотность насыщенного пара

Плотность НП определяют по формуле.

D st = 216,49 * P / (Z st * (t + 273))

  • D st — плотность насыщенного пара в кг / м3;
  • P- абсолютное давление пара в барах;
  • t — температура в градусах Цельсия;
  • Z st — коэффициент сжимаемости насыщенного пара при Р и t.

Влажность насыщенного пара

Когда котлоагрегат нагревает воду, пузырьки, прорывающиеся через слой воды, захватываются паром. Влажный пар определяется как пар, в котором вода присутствует в виде микрокапель паров воды. В этом случае соотношение может составлять от 0 до 1. Если пар имеет 20 % воды по объему — он считается сухим на 80% или имеет долю сухости 0,8.

Таблицы НП содержит значения, такие как температура, энтальпия и удельный объем для сухого НП, но не для влажного. Для того чтобы их определить потребуется воспользоваться формулами, учитывая соотношение двух сред:

Удельный объем (v) мокрого пара

v = X * v g + (1 — X) * v f

  • X = сухость (% / 100);
  • v f = удельный объем жидкости;
  • v g = удельный объем НП.

Удельная энтальпия пара сухостью Х:

h = h f + X * h fg

  • X = сухость (%);
  • h f = удельная энтальпия жидкости;
  • h fg = удельная энтальпия НП.

Чем влажнее пар, тем ниже значения удельного объема, теплосодержание, энтальпия и энтропия. Таким образом сухость пара оказывает существенное влияние на все эти значения.

Задачей теплоэнергетиков является организация процессов парообразования в котле с сухостью 100%. Для этого в барабанах котлов устанавливают специальные сепарационные устройства, отделяющие пар от воды.

Общие положения

1.1. Рекомендация охватывает измерения (определения) величин, которые являются исходными для осуществления учета тепловой энергии и теплоносителя при взаиморасчетах энергоснабжающей организации с потребителем.

1.2. При измерении тепловой энергии применяют косвенные измерения, при которых тепловую энергию определяют на основании из мерений расхода (массового или объемного) или количества (массы или объема) теплоносителя, температуры и (или) давления теплоносителя.

Измерение тепловой энергии может осуществляться с учетом или без учета тепловой энергии холодной воды.

1.3. При измерении тепловой энергии и количества теплоносителя применяют регламентированные в нормативно-технических документах (НТД) методы измерений расхода, количества, температуры и давления теплоносителя.

Определение плотности насыщенного пара

Определение плотности насыщенного пара является важным для ряда приложений, особенно в области термодинамики, где требуется учет паровых процессов. Знание плотности насыщенного пара позволяет рассчитывать различные параметры, такие как массовый поток пара или объем парового пространства.

Плотность насыщенного пара зависит от температуры и давления. При повышении температуры плотность насыщенного пара обычно увеличивается, так как при этом молекулы пара обладают большей энергией и двигаются быстрее. При повышении давления плотность насыщенного пара также обычно увеличивается, поскольку при этом молекулы пара находятся ближе друг к другу.

Определение плотности насыщенного пара используется в различных промышленных процессах, в технике и в научных исследованиях. Знание плотности насыщенного пара позволяет проводить точные расчеты и проектировать системы, в которых пар находится в насыщенном состоянии.

Плотность насыщенного пара и другие его физические свойства

Процесс образования пара из жидкой или твердой фазы называют парообразованием. В случае, если пар образует противоположным путем, то процесс носит название конденсация.

Пар можно рассматривать как идеальный газ, если он находится в условиях низкого давления и высокой температуры. Практически в 99 случаев из 100, при употреблении слова «пар» понимают или имеют ввиду водяной пар, во всех остальных случаях обычно имеется уточнение.

Различают два вида состояний пара химических соединений, не содержащих примесные компоненты:

— пар ненасыщенный, т.е. пар, который пока не находится в состоянии динамического равновесия с жидкостью. Если на поверхности жидкости находится ненасыщенный пар, то процесс парообразования преобладает над процессом конденсации. Именно поэтомув данном случае объем жидкости в сосуде будет постепенно уменьшаться.

— пар насыщенный, т.е. пар, который находится в динамическом равновесии с жидкостью, что по-простому означает следующее: ни один из процессов – парообразование или конденсация не преобладает один над другим. Если объем фиксирован, а температура одинакова в двух случаях, тов данном сосуде не будет находиться больше пара, чем изначально. Данное равновесие можно нарушить, если сжимать пар, находящийся над жидкостью при помощи поршня: конденсация станет преобладать над парообразованием. Стоит помнить, что данный процесс – явление временное и он будет продолжаться до тех пор, пока динамическое равновесие снова не установится.

Время установления динамического равновесия между паром и жидкостью значительно зависит от плотности пара, что связано с различием сил межмолекулярного взаимодействия.

Зависимость изменения плотности, а также других физических характеристик водяного пара (насыщенный) от температуры приведены в таблице:

Понятие кипения

В некоторых случаях испарение жидкости происходит не только с ее поверхности, а также со всего объема. Кипение является ответом на происходящий процесс. С повышением температуры на водной поверхности появляются пузырьки. За небольшой промежуток времени внутри пузырьков происходит испарение жидкости. Одновременно повышается давление. Расширяясь, они поднимаются на поверхность, где сразу же лопаются.

Температура кипения жидкости в естественных условиях при 100000 Па составляет 100 градусов. Она изменяется в зависимости от давления. На высоте в горах вода закипает при более низкой температуре. Если же сосуд закрыт герметично, то закипания вообще не происходит.

§ 9. Испарение и конденсация. Насыщенный пар

Насыщенный пар.

Пар, находящийся в состоянии динамического равновесия с жидкостью, называют насыщенным паром.

Давление такого пара называют давлением насыщенного пара.

Насыщенный пар обладает свойствами, отличающимися от свойств идеального газа.

Первое отличие состоит в том, что давление насыщенного пара не зависит от его объёма при постоянной температуре. Число молекул, переходящих из жидкости в пар через единичную площадку за единичный промежуток времени, зависит только от состава жидкости и её температуры. Число молекул, переходящих из пара в жидкость, зависит от концентрации пара, а значит, от его давления. Поэтому сразу при уменьшении объёма пара его давление увеличивается, что тут же приводит к возрастанию числа молекул, переходящих в жидкость. В результате число молекул пара уменьшается и спустя некоторый промежуток времени устанавливается прежнее давление, если температура жидкости сохранялась неизменной. При увеличении объёма пара его давление, наоборот, уменьшается. Вместе с этим уменьшается и число молекул, переходящих из пара в жидкость. В результате число молекул, которые покидают поверхность жидкости (оно не изменяется при T = const), превышает число молекул, возвращающихся в жидкость. Равновесие опять восстанавливается при достижении первоначального значения давления.

Второе отличительное свойство: при увеличении температуры давление pн насыщенного пара возрастает значительно быстрее, чем давление ри.г идеального газа. В случае идеального газа рост давления обусловлен только увеличением его температуры (p = nkT, V = const). В случае же насыщенного пара рост температуры приводит к увеличению числа молекул, переходящих из жидкости в пар, т. е. к росту концентрации молекул пара. В соответствии с формулой p = nkT давление пара увеличивается не только в результате непосредственного повышения температуры, но и в результате увеличения концентрации молекул пара, вызванного всё тем же повышением.

Давление насыщенного пара зависит также и от рода жидкости. Чем меньше силы взаимодействия между молекулами жидкости, тем больше концентрация молекул насыщенного пара, а значит, тем больше его давление и плотность.

При изменении объёма насыщенного пара его масса также изменяется. Поэтому законы идеального газа для изопроцессов можно применять к пару только в том случае, если он далёк от насыщения и его масса остаётся неизменной.

Однако уравнение Клапейрона–Менделеева  можно использовать для нахождения любых параметров (p, V, T, m, ρ) насыщенного пара.

Давление (плотность) насыщенного пара при данной температуре — максимальное давление (плотность), которое может иметь пар, находящийся в состоянии динамического равновесия с жидкостью при этой температуре.

От теории к практике

1. В сосуде находится жидкость и её насыщенный пар. Зависит ли давление насыщенного пара от: а) рода жидкости; б) объёма сосуда; в) температуры жидкости; г) площади свободной поверхности жидкости?

2. Значение температуры жидкости, находящейся в динамическом равновесии со своим паром, t = 100 C°. Как изменится давление пара, если при неизменной температуре его объём медленно: а) вдвое увеличить; б) вдвое уменьшить?

Понравилась статья? Поделиться с друзьями:
Meridian-complex
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: